Cohizon Life Sciences Limited Chemwatch: **39349-8** Version No: **6.1** Safety Data Sheet #### Chemwatch Hazard Alert Code: 3 Issue Date: **01/03/2023**Print Date: **04/01/2025**S.GHS.IND.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | 2-AMINOBENZONITRILE | | |-------------------------------|--|--| | Chemical Name | C7-H6-N2: H2NC6H4CN: anthranilonitrile: benzonitrile. o-amino-: o-aminobenzonitrile: o-anthranilonitrile: o-cvanoaniline: 2- | | | Synonyms | | | | Proper shipping name | TOXIC SOLID, ORGANIC, N.O.S. (contains 2-aminobenzonitrile) | | | Chemical formula | C7-H6-N2 | | | Other means of identification | Not Available | | | CAS number | 1885-29-6 | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Intermediate. ## Details of the manufacturer or supplier of the safety data sheet | Registered company name | Cohizon Life Sciences Limited | | |-------------------------|---|--| | Address | Plot No. 6102/3, 6117-19, 5809-10,GIDC, Ankleshwar Gujarat 393002 India | | | Telephone | Not Available | | | Fax | Not Available | | | Website | Not Available | | | Email | Not Available | | ## **Emergency telephone number** | Associat | tion / Organisation | on CHEMWATCH EMERGENCY RESPONSE (24/7) | | |----------|----------------------------------|--|--| | Eme | ergency telephone
number(s) | +918000403230 | | | tele | Other emergency ephone number(s) | +61 3 9573 3188 | | Once connected and if the message is not in your preferred language then please dial 01 Issue Date: **01/03/2023** Print Date: **04/01/2025** ### Classification of the substance or mixture #### Chemwatch Hazard Ratings Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Acute Toxicity (Oral, Dermal and Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 2 ### Label elements Hazard pictogram(s) Signal word Warning ### Hazard statement(s) | H302+H312+H332 | Harmful if swallowed, in contact with skin or if inhaled. | | |----------------|---|--| | H315 | Causes skin irritation. Causes serious eye irritation. | | | H319 | | | | H335 | May cause respiratory irritation. | | | H351 | Suspected of causing cancer. | | ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | |---|---|--| | P261 | Avoid breathing dust/fumes. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | P270 | Do not eat, drink or smoke when using this product. | | | P271 Use only outdoors or in a well-ventilated area. | | | | P280 Wear protective gloves, protective clothing, eye protection and face protection. | | | ### Precautionary statement(s) Response | P301+P312 | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell. | | |----------------|--|--| | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | P308+P313 | F exposed or concerned: Get medical advice/ attention. | | | P330 | Rinse mouth. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | #### Precautionary statement(s) Storage | | Trecautionary statement(3) ctorage | | | |-----------------------|--|------------------|--| | P405 Store locked up. | | Store locked up. | | | | P403+P233 Store in a well-ventilated place. Keep container tightly closed. | | | ## Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |------|--| |------|--| ## Page 3 of 13 2-AMINOBENZONITRILE Issue Date: 01/03/2023 Print Date: 04/01/2025 ## **SECTION 3 Composition / information on ingredients** #### **Substances** | CAS No | %[weight] | Name | |-----------|-----------|---------------------| | 1885-29-6 | >98 | 2-aminobenzonitrile | #### **Mixtures** See section above for composition of Substances #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Nush out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |---|---| | Skin Contact If skin contact occurs: | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. | #### Indication of any immediate medical attention and special treatment needed The material may induce methaemoglobinaemia following exposure. - Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits. - Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed. - Symptomatic patients with methaemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour. - Thorough cleansing of the entire
contaminated area of the body, including the scalp and nails, is of utmost importance. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time 1. Methaemoglobin in blood 1.5% of haemoglobin During or end of shift B, NS, SQ B: Background levels occur in specimens collected from subjects **NOT** exposed NS: Non-specific determinant; also observed after exposure to other materials SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test. ## **SECTION 5 Firefighting measures** ## **Extinguishing media** - ▶ Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). Comment ## Page 4 of 13 2-AMINOBENZONITRILE Issue Date: 01/03/2023 Print Date: 04/01/2025 - Carbon dioxide - Water spray or fog Large fires only. Fire Fighting #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters ## ► Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - Do not approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire - Equipment should be thoroughly decontaminated after use. #### Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. # • Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - ▶ Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-meter/sec. - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes ## **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** Fire/Explosion Hazard See section 12 ## Methods and material for containment and cleaning up #### Minor Spills - Remove all ignition sources - Clean up all spills immediately. Chemwatch: 39349-8 Page 5 of 13 Issue Date: 01/03/2023 Version No. 6.1 Print Date: 04/01/2025 #### 2-AMINOBENZONITRILE Avoid contact with skin and eyes. • Control personal contact with the substance, by using protective equipment. • Use dry clean up procedures and avoid generating dust. • Place in a suitable, labelled container for waste disposal. • Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. ▶ Contain spill with sand, earth or vermiculite. **Major Spills** Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - ▶ DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - ▶ Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Safe handling Establish good housekeeping practices. - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance - ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors. - The operator, the packaging container and all equipment must be grounded
with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - ▶ Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities ## Suitable container Other information - ▶ Lined metal can, lined metal pail/ can. - Plastic pail. ## Page 6 of 13 2-AMINOBENZONITRILE Issue Date: **01/03/2023**Print Date: **04/01/2025** - Polvliner drum. - ▶ Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. For low viscosity materials - Drums and jerricans must be of the non-removable head type. - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging: - Cans with friction closures and - low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *. In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. * unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed. ## Storage incompatibility - Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less. - Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective. - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. - Avoid reaction with oxidising agents, bases and strong reducing agents. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. #### **SECTION 8 Exposure controls / personal protection** ### **Control parameters** ### Occupational Exposure Limits (OEL) ## INGREDIENT DATA Not Available | Ingredient | Original IDLH | Revised IDLH | |---------------------|---------------|---------------| | 2-aminobenzonitrile | Not Available | Not Available | ## Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |---------------------|--|----------------------------------| | 2-aminobenzonitrile | E ≤ 0.01 mg/m³ | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** ## Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - ▶ Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks - ▶ Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. ## Page 7 of 13 2-AMINOBENZONITRILE Issue Date: **01/03/2023**Print Date: **04/01/2025** Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. | Type of Contaminant: | Air Speed: | |--|----------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 ft/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-
2000 ft/min) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment ## Eye and face protection #### Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection #### See Hand protection below #### Hands/feet protection - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has
therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - · dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - \cdot Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Page 8 of 13 Issue Date: 01/03/2023 Print Date: 04/01/2025 | | · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. | |------------------|--| | Body protection | See Other protection below | | Other protection | Overalls. Eyewash unit. Barrier cream. Skin cleansing cream. | ### Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - · The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - · Use approved positive flow mask if significant quantities of dust becomes airborne. - \cdot Try to avoid creating dust conditions. ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | Off-white crystalline powder; does not mix well with water. | | | |--|---|---|----------------| | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-
octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | 49-52 | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | 267-268 | Molecular weight (g/mol) | 118.14 | | Flash point (°C) | 145 | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm
or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Negligible | | Vapour pressure (kPa) | Negligible | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | ## Page 9 of 13 2-AMINOBENZONITRILE Issue Date: **01/03/2023** Print Date: **04/01/2025** | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | |---|---------------|-------------------------|---------------| | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition | | Enclosed Space Ignition | | | Time Equivalent (s/m3) | Not Available | Deflagration Density | Not Available | | , | | (g/m3) | | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** ## Information on toxicological effects | Inhaled | Inhalation of vapours, aerosols (mists, fumes) or dusts, generated by the material during the course of normal handling, may be harmful. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. | |--------------
--| | Ingestion | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The substance and/or its metabolites may bind to haemoglobin inhibiting normal uptake of oxygen. This condition, known as "methaemoglobinemia", is a form of oxygen starvation (anoxia). Symptoms include cyanosis (a bluish discolouration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure. At about 15% concentration of blood methaemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal. Aromatic nitriles, unlike aliphatic nitriles, do not appear to liberate cyanide within the body. | | Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | This material can cause eye irritation and damage in some persons. | | Chronic | There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 micron penetrating and remaining in the lung. Most arylamines are very toxic to the blood cell-forming system, and they produce methaemoglobinaemia in humans. High doses congest the spleen and then cause formation of sarcomas (a type of malignant tumour). Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate. | | 2 AMINODENZONITRII E | TOXICITY | IRRITATION | |----------------------|--|---------------| | 2-AMINOBENZONITRILE | Not Available | Not Available | | | | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. | | .egend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ## Page **10** of **13** Issue Date: **01/03/2023**Print Date: **04/01/2025** #### 2-AMINOBENZONITRILE ### 2-AMINOBENZONITRILE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | Acute Toxicity | ✓ | Carcinogenicity | ✓ | |--------------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin
sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification ✓ – Data available to make classification ### **SECTION 12 Ecological information** #### **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------|--|--------------------|---------------|------------------|------------------| | 2-AMINOBENZONITRILE | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | ## For Arylamines (Aromatic Amines): Aquatic Fate - Arylamines, particularly aromatic amines, irreversibly bind with humic substances present in most natural waters. The estimated half-life of aromatic amines in water is approximetly 100 days. Ecotoxicity: Anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidized by organic radicals. The estimated half-life of aromatic amines in water is approximately 100 days. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------|-------------------------|------------------| | 2-aminobenzonitrile | HIGH | HIGH | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------------|--------------------| | 2-aminobenzonitrile | LOW (LogKOW = 1.4) | #### Mobility in soil | Ingredient | Mobility | |---------------------|-----------------------| | 2-aminobenzonitrile | LOW (Log KOC = 27.12) | ## **SECTION 13 Disposal considerations** ## Waste treatment methods ## Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. Chemwatch: 39349-8 Page 11 of 13 Version No: 6.1 #### 2-AMINOBENZONITRILE Issue Date: **01/03/2023**Print Date: **04/01/2025** A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ▶ Reuse - ► Recycling - ▶
Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** ### **Labels Required** ### Land transport (UN) | • • • | | | | |------------------------------------|---|--------------------|--| | 14.1. UN number or ID number | 2811 | | | | 14.2. UN proper shipping name | TOXIC SOLID, ORGANIC, N.O.S. (contains 2-aminobenzonitrile) | | | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | 6.1 Not Applicable | | | 14.4. Packing group | II. | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Special provisions Limited quantity | 274
500 g | | ## Air transport (ICAO-IATA / DGR) | 14.1. UN number | 2811 | | | | |------------------------------------|---|----------------|--------|--| | 14.2. UN proper shipping name | Toxic solid, organic, n.o.s. * (contains 2-aminobenzonitrile) | | | | | | ICAO/IATA Class | 6.1 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | 01033(03) | ERG Code | 6L | | | | 14.4. Packing group | II | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Special provisions | | A3 A5 | | | | Cargo Only Packing Instructions | | 676 | | | 14.6. Special precautions for user | Cargo Only Maximum Qty / Pack | | 100 kg | | | | Passenger and Cargo Packing Instructions | | 669 | | | | Passenger and Cargo Maximum Qty / Pack | | 25 kg | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y644 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 1 kg | | Page **12** of **13** 2-AMINOBENZONITRILE Issue Date: 01/03/2023 Print Date: 04/01/2025 ### Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 2811 | | | |------------------------------------|---|--------------------------|--| | 14.2. UN proper shipping name | TOXIC SOLID, ORGANIC, N.O.S. (contains 2-aminobenzonitrile) | | | | 14.3. Transport hazard class(es) | IMDG Class 6.1 IMDG Subsidiary Hazard Not Applicable | | | | 14.4. Packing group | II | | | | 14.5 Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-A, S-A
274
500 g | | ### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---------------------|---------------| | 2-aminobenzonitrile | Not Available | ### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |---------------------|---------------| | 2-aminobenzonitrile | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture 2-aminobenzonitrile is found on the following regulatory lists Not Applicable ## **Additional Regulatory Information** Not Applicable ## **National Inventory Status** | reactional inventory otatas | | |--|---| | National Inventory | Status | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (2-aminobenzonitrile) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | No (2-aminobenzonitrile) | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (2-aminobenzonitrile) | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | Issue Date: **01/03/2023**Print Date: **04/01/2025** ## **SECTION 16 Other information** | Revision Date | 01/03/2023 | |---------------|------------| | Initial Date | 12/05/2005 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 5.1 | 05/03/2018 | Hazards identification - Classification | | 6.1 | 01/03/2023 | Expiration. Review and Update | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ► TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ► OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ► IMSBC: International Maritime Solid Bulk Cargoes Code - ▶ IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers - ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ▶ NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.